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ABSTRACT
Real-world web applications such as Amazon and Netflix often pro-
vide services in multiple countries and regions (i.e., markets) around
the world. Generally, different markets share similar item sets while
containing different amounts of interaction data. Some markets
are data-scarce and others are data-rich and leveraging those data
from similar and data-rich auxiliary markets could enhance the
data-scarce markets. In this paper, we explore multi-market rec-
ommendation (MMR), and propose a novel model called M3Rec to
improve all markets recommendation simultaneously. Since items
play the role to bridge different markets, we argue that mining
the similarities among items is the key point of MMR. Our M3Rec
preprocess two global item similarities: intra- and inter- market sim-
ilarities. Specifically, we first learn the second-order intra-market
similarity by adopting linear models with closed-form solutions,
and then capture the high-order inter-market similarity by the ran-
domwalk. Afterward, we incorporate the global item similarities for
each local market. We conduct extensive experiments on five public
available markets and compare with several state-of-the-art meth-
ods. Detailed experimental results demonstrate the effectiveness of
our proposed method.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Neural networks.
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Figure 1: A simple illustration of MMR. The purple dotted
lines denote second-order intra-market item relation, the red
dotted lines denote high-order inter-market item relation.

1 INTRODUCTION
Many e-commerce and media applications such as Amazon [26]
and Spotify [24] are deployed in multiple countries and regions, i.e.,
deployed in different markets. Different markets contain different
amounts of interaction data between users and items where user
sets are disjoint with other markets and the item sets are partially
overlapped with others. Traditional academic and industrial recom-
mender systems (RS) mainly focus on using data in a single market
to train models and then serve the market, which limits the per-
formances of data-scarce markets. Thus, it is critical to explore all
market data to enhance the data-scarce markets, i.e., multi-market
recommendation (MMR).

Related work. To our knowledge, the most closely related work
is FOREC [3], which releases the XMarket dataset for MMR. The
FOREC follows meta learning framework, it first pre-training a
NeuMF [13] network on multiple markets, and then fine-tune the
network on the target market.

Except it, the multi-task learning methods could also be adapted
into MMR, such as Cross-Stitch [21], MMoE [19], Bi-TGCF [18] and
STAR [25]. Cross-Stitch could adapt NeuMF [13] as the base encoder
for each task and introduces a cross-stitch network to transfer
information between base encoders. MMoE learns task relationships
by sharing the mixture-of-expert base encoders across all tasks,
while designing a task-specific gating network to aggregate encoder
outputs to optimize each task. Bi-TGCF exploits LightGCN [12] as
the base encoder to capture the collaborative filtering signal for
each task and introduces a feature transfer layer to connect base
encoders. STAR devises an encoder topology structure, and utilizes a
task-shared base encoder to enhance all task-specific base encoders.

Our contributions. Although the above methods can be used
in MMR, they ignore that overlapped items play the central role to

Short Research Paper  SIGIR ’22, July 11–15, 2022, Madrid, Spain

2249

https://doi.org/10.1145/3477495.3531839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3477495.3531839


bridge different markets. Since data-rich markets and data-scarce
markets share some overlapped items in MMR, therefore data-rich
markets could provide more co-occurrence information to learn
overlapped items. Mining the similarity between items could make
the well-learned overlapped items supported by data-rich markets
enhance similar items in data-scarce markets. We argue that the
key point of MMR is how to mine the multi-market item similarity.
In this work, we propose a simple-yet-effective model M3Rec to
Mine item similarity for Multi-Market Recommendation. As shown
in Figure 1, we consider two level item pair similarities: the intra-
market similarity to capture the second-order item-item relation
and the inter-market similarity to capture the higher-order item-
item relation.

For the intra-market level similarity: since users often interact
with highly coherent and consistent items, we utilize EASE𝑅 [27]
to learn the related item pairwise pattern for modeling second-
order item-item relation. In this way, items interacted by the same
user are encouraged to be more similar than other non-interacted
items. Nevertheless, the second-order relation is insufficient since
the market-specific item pairs were ignored, e.g., market-𝐴-specific
item should require at least 4 hops to connect the market-𝐵-specific
item. It motivates us to further consider higher-order inter-market
item-item relations.

For the inter-market level similarity: to capture the high-order
similarity of items in different markets, we exploit the idea of ran-
dom walk [14] to sample various multi-market item sequences
to learn item-item relation for all markets. Specifically, we first
construct a global item co-occurrence graph, which could connect
different markets by sampling different item sequences. Then, we
leverage the skip-gram algorithm [20] with the negative sampling
method to learn the robust global item embedding.

In the implementation, we first pre-train the intra-market simi-
larity by EASE𝑅 [27] with its closed-form solutions and the inter-
market similarity by random walk. Then, we leverage them as
prior to fine-tune all local market recommendation. In MMR, the
market-overlapped itemmay have different embeddings in different
markets since various biases and distributions of markets. In this
work, we think an item should express nearness embeddings even
in different markets. The reason is that item embeddings indicate
the item intrinsic properties such as category and usage. There-
fore, we further learn a 𝐿2-norm penalized small-scale local item
embedding for each item.

Our main contributions are summarized as follows:
• We introduce a fresh perspective to solve MMR by mining
the item similarity, and propose a novel method M3Rec.

• We consider two level item similarities to enhance MMR.
The intra-market similarity is preprocessed by the linear
model with closed-form solutions, while the inter-market
similarity is preprocessed by the random walk model.

• We empirically evaluate M3Rec on five public available mar-
kets and show its superior performance.

2 PRELIMINARY
2.1 Problem Statement
Assuming there are existing 𝑀 parallel markets {M1, . . . ,M𝑀 }
with similar item sets. Let M𝑚 = (U𝑚,V𝑚, E𝑚,X𝑚) denote the

𝑚-th market data, where U𝑚,V𝑚, E𝑚 are the user set, the item set,
the edge set, and X𝑚 ∈ {0, 1} |U𝑚 |× |V𝑚 | describes the binary user-
item interaction matrix. By merging all markets data, we further
introduce a global market M = (U ,V, E,X) to capture the intra-
and inter- market item similarity. Given those market data, our goal
is to enhance predictive performance for all markets.

2.2 Linear Item Pairwise Model
The key idea of linear item pairwise model [8–10, 28, 29] is to
learn second-order item-item relevance matrix B ∈ R |V |× |V | from
observed user-item interaction matrix X ∈ {0, 1} |U |× |V | . Formally,
the linear item-itemmodel could make recommendations as follows:

X̂ = XB, (1)

where X̂ ∈ R |U |× |V | is the predictive recommendation result.
SLIM [22] is a pioneer work to estimate B, it minimizes the least
squares under constraints that all entries in B are non-negative and
zero diagonal:

argmin
B

∥X − X · B∥2
𝐹 + 𝜆∥B∥1 + 𝜆𝐹 ∥B∥2

𝐹

s.t. diag(B) = 0, B ≥ 0,
(2)

where ∥ · ∥1 and ∥ · ∥𝐹 denote the 𝐿1 norm and Frobenius norm,
𝜆 and 𝜆𝐹 are hyper-parameters. The constraint of zero diagonal
diag(B) = 0 is crucial to avoid B = I to prevent the model from
overfitting problem [29]. Although SLIM provides a brief objective,
but it is notorious to train. Recently, EASE𝑅 [27] simplify SLIM by
removing the 𝐿1 norm and the non-negative constraint on B as:

argmin
B

∥X − X · B∥2
𝐹 + 𝜆𝐹 ∥B∥2

𝐹 s.t. diag(B) = 0. (3)

As discussed in [27], the above straightforward objective could be
minimized in closed-form solution by Lagrange multipliers:

B̂ = I − Ĉ · diagMat
(
1 ⊘ diag(Ĉ)

)
, where Ĉ = (X⊤X + 𝜆𝐹 I)−1 (4)

where B̂ is the predictive matrix, diagMat(·) denotes a diagonal
matrix, 1 is a vector of ones and ⊘ means element-wise division.

2.3 RandomWalk Model
The randomwalk models [11, 23, 30] aim at capturing the transition
relations among the set of nodes, a.k.a. the item set V . Given the
items co-occurrence weighted matrix A = X⊤X ∈ R |V |× |V | ,
for the standard random walk process, the transition probability
matrix P is defined:

p(𝑣 𝑗 |𝑣𝑖 ) =
A𝑖 𝑗

deg(𝑣𝑖 )
= P𝑖 𝑗 , P = D−1A, (5)

where D = diagMat( [deg(𝑣1), deg(𝑣2), . . . ]) ∈ R |V |× |V | is the de-
gree matrix, deg(·) is the degree function, p(𝑣 𝑗 |𝑣𝑖 ) is the probability
from node 𝑣𝑖 jumping to node 𝑣 𝑗 . Skip-gram algorithm [20] provides
a simple way to model P, for each item sequence (𝑣𝑖 )𝑇𝑖=1:

argmax
𝑇∑︁
𝑖=1

𝑇∑︁
𝑗≠𝑖

log p̂(𝑣𝑗 |𝑣𝑖 ),where p̂(𝑣𝑗 |𝑣𝑖 ) =
exp(𝒗⊤

𝑖
�̄�𝑗 )∑

𝑣𝑘 ∈V exp(𝒗⊤
𝑖
�̄�𝑘 )

, (6)

where 𝒗, 𝒗 ∈ R𝑑 are training target and context embedding of item.
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3 METHODOLOGY
Given all parallel local markets and global market interaction data,
we first pre-process two global item similarities by linear itemmodel
and random walk model. Afterward, we exploit them to make all
local market recommendations simultaneously.

3.1 Global Item Similarity Mining
3.1.1 Intra-Market Item Similarity. Given the global user-item in-
teraction matrix X, we follow the assumption of EASE𝑅 in Eq.(3-
4) to obtain the zero-diagonal second-order item-item relevance
matrix B̂Glob. Actually, the relevance matrix B̂Glob is not directly
reflecting the probability among items, i.e., each element is non-
negative and each row summation is 1. To satisfy the constraint
and accelerate computation, we first filter the smaller elements as
zeros by threshold 𝜖 , and then normalize the matrix as:

BGlob = Normalize(B̂Glob≥𝜖 ), where B̂Glob≥𝜖 = Filter(B̂Glob, 𝜖) (7)

where the BGlob denotes intra-market item similarity matrix1. In
our experiments, compared with B̂Glob, we find our modified matrix
BGlob does not degenerate the prediction result under the 0.02 > 𝜖 .

3.1.2 Inter-Market Item Similarity. Besides the intra-market sim-
ilarity, we also consider the inter-market similarity. As discussed
in § 2.3, random walk models could implicitly learn the item em-
bedding to capture the item correlation by Eq.(6). Since we already
obtain the intra-market item similarity matrix BGlob, thus we can
explicitly incorporate it to train item embedding:

V = BGlobVInit + VInit, V̄ = BGlobV̄Init + V̄Init, (8)

where VInit, V̄Init ∈ R |V |×𝑑 are initialized target and context param-
eter matrix of item. Besides, to avoid enormous computation cost
of p̂(𝑣 𝑗 |𝑣𝑖 ) in Eq.(6), we leverage negative sampling technique to
replace it for large-scale item training:

p̂(𝑣 𝑗 |𝑣𝑖 ) = Sigmoid(𝒗⊤𝑖 𝒗 𝑗 )
∏

𝑣𝑘 ∈N
Sigmoid(𝒗⊤𝑖 𝒗𝑘 ), (9)

where 𝒗 ∈ V, 𝒗 ∈ V̄,N is the negative samples set. Afterward, we
keep the same objective in Eq.(6) to train embedding V to reflect
inter-market similarity, we denote it as VGlob in following section.

3.2 Local Market Recommendation
After obtaining the preprocessed intra-market item similarity ma-
trix BGlob and inter-market item embedding VGlob, we then conduct
the market adaptation operation for each local market.

For simplicity, we take the𝑚-th market M𝑚 as example. Since
the local market only including a partial items V𝑚 ∈ V , we first
tailor BGlob,VGlob as BGlob𝑚 ∈ R |V𝑚 |× |V𝑚 | , VGlob

𝑚 ∈ R |V𝑚 |×𝑑 for
adaptation2. Intuitively, the same item may have different embed-
dings in different markets, but should express nearness embeddings.
The reason is that item embeddings indicate the item intrinsic prop-
erties such as category and usage, thereby we have:

V𝑚 = VGlob
𝑚 + VLoca

𝑚 , (10)

1As discussed before, the second-order similarity neglects market-specific item pairs.
2Note that we also normalize the tailored matrix BGlob

𝑚 .

Table 1: Statistics of real-world anonymized markets, #Rate
denotes the percent of its items shared by other markets.

M1 M2 M3 M4 M5

|U | 7,109 2,697 3,328 5,482 6,466
|V | 2,198 1,357 1,245 2,917 9,762
#𝑇𝑟𝑎𝑖𝑛 48,302 19,615 23,367 41,226 77,173
#𝑉𝑎𝑙𝑖𝑑 3,534 1,375 1,639 2,706 3,207
#𝑇𝑒𝑠𝑡 3,575 1,322 1,689 2,776 3,259
#𝑅𝑎𝑡𝑒 75.97% 84.89% 89.23% 72.78% 27.42%

where VLoca𝑚 is initialized parameter matrix of M𝑚 . Besides, VLoca𝑚

is forced to be small-scale, by penalizing the 𝐿2-norm of parameters.
For the user embeddings, inspired by the neighboring aggregation
idea [4, 5, 12], we learn them from V𝑚 as follows:

U𝑚 = X̂𝑚V𝑚 + ULoca
𝑚 , where X̂𝑚 = Normalize(X𝑚BGlob𝑚 ), (11)

where X̂𝑚 ∈ R |U𝑚 |× |V𝑚 | is adaptive user-item matrix incorporat-
ing intra-market similarity. Finally, wemeasure the Cosine distance
𝑦𝑚
𝑖 𝑗

between user 𝑢𝑖 ∈ U𝑚 and item 𝑣 𝑗 ∈ V𝑚 for training:

𝑦𝑚𝑖 𝑗 = Cosine(𝒖𝑚𝑖 , 𝒗𝑚𝑗 ),

L𝑚 (𝑢𝑖 , 𝑣 𝑗 ) = (1 − 𝑦𝑚𝑖 𝑗 ) +
1

|N |
∑︁

𝑣𝑘 ∈N
max(0, 𝑦𝑚

𝑖𝑘
− 𝛾) (12)

where 𝒖𝑚
𝑖

∈ U𝑚, 𝒗𝑚
𝑗
∈ V𝑚 ,N denotes the negative samples set, 𝛾

is the margin to filter negative samples.

3.3 Model Optimization
Our model could be optimized over the𝑀 markets simultaneously:

L =

𝑀∑︁
𝑚=1

(
L𝑚 + 𝜆∥VLoca

𝑚 ∥2
)
, (13)

where the ∥ · ∥2 is the 𝐿2 norm, 𝜆 is the factor to control the local
embedding to be small-scale. We train the model by minimizing L
through Adam stochastic gradient descent [16] over the shuffled
mini-batches.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. Following FOREC [3], we evaluate our model on
the subset electronics domain data fromXMarket dataset3, which in-
cludes several real-world markets, e.g., United Kingdom, Germany,
France, Canada, United States and so on. To be specific, we exploit
the public five pre-processed anonymized markets [2, 7, 32, 33] of
electronics XMarket data4 to train our model. For evaluation, we
randomly select 50% users for validation and the other 50% users
for test. The concrete statistics of users, items, interactions and item
overlapping rates are listed in Table 1.

3https://xmrec.github.io/
4https://github.com/hamedrab/wsdm22_cup_xmrec/tree/main/DATA
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Table 2: Performance comparison of different methods.

Models MRR NDCG@10 HR@10

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

M
ix

NeuMF 41.40 28.50 29.17 27.19 8.87 46.31 34.84 36.57 29.83 9.01 62.73 55.60 60.40 40.33 12.26
LightGCN 43.85 26.37 27.14 28.86 12.58 48.30 32.70 34.22 31.03 13.16 64.73 52.13 56.26 41.14 17.13
Random Walk 42.87 25.51 27.83 27.51 13.32 48.05 31.10 34.89 30.08 14.07 64.66 50.20 57.53 39.20 17.73
EASE𝑅 48.96 30.05 31.70 33.45 16.58 54.95 37.92 40.13 36.63 16.93 70.80 57.40 63.60 45.13 19.13

M
ul
ti

Cross-Stitch 44.37 32.61 34.13 27.47 11.75 49.15 36.65 39.13 29.16 12.51 64.46 54.06 59.46 38.93 17.06
MMoE 45.36 34.78 36.48 28.55 11.29 48.98 38.71 41.30 30.16 11.79 65.73 56.26 61.53 38.60 16.66
Bi-TGCF 45.29 27.31 28.55 30.18 13.78 50.46 33.43 35.77 32.76 14.42 66.86 53.46 58.73 42.26 17.86
STAR 41.66 30.87 33.43 27.30 11.10 46.57 35.25 37.09 29.84 12.48 62.93 54.89 60.80 40.20 16.60
FOREC 48.26 35.89 36.57 31.61 12.50 52.05 40.03 41.88 33.52 13.19 65.06 58.42 64.13 41.60 17.46
M3Rec 50.24 36.41 38.75∗ 35.00 17.93∗ 55.83 40.04 43.35∗ 37.98∗ 18.63∗ 73.13∗ 60.86∗ 66.53∗ 48.46∗ 22.66∗

* indicates that the improvements are statistically significant for p < 0.05 judged with the runner-up result in each case by paired t-test.

Table 3: Performance of different model variants.

Model variants MRR

M1 M2 M3 M4 M5

Complete 50.24 36.41 38.75 35.00 17.93
w/o intra-market similarity 47.48 32.40 33.01 33.23 15.31
w/o inter-market similarity 48.37 33.16 35.66 33.79 16.73
w/o both similarities 46.47 29.10 31.21 31.92 13.10

4.1.2 Baselines. We compare M3Rec with several baselines which
could be categorized into four classes: (1) Traditional methods:
NeuMF [13] and LightGCN [12], (2) Item-based methods: Random
Walk [1] and EASE𝑅 [27], (3) Multi-task methods: Cross-Stitch [21],
MMoE [19], Bi-TGCF [18] and STAR [25], (4) Multi-market method:
FOREC [3]. The main details of these methods have already been
introduced in related work and preliminary.

4.1.3 Evaluation Protocol. Following FOREC [3], we also lever-
age the leave-one-out method [6] to calculate the recommendation
performance. To guarantee unbiased evaluation, we follow Ren-
dle’s literature [17] to calculate 1000 result list for each test case
(containing 999 negative items and 1 positive item). Afterward, we
adopt three widely-used metrics MRR (Mean Reciprocal Rank [31]),
NDCG (Normalized Discounted Cumulative Gain [15]) and HR (Hit
Ratio) to show performance on the 𝑡𝑜𝑝-10 ranking results.

4.1.4 Parameter Settings. For a fair comparison, we keep the same
hyper-parameters setting for each method: the embedding size 𝑑 is
fixed as 128, the dropout rate is fixed as 0.3, the learning rate is set
as 0.001, the batch size is fixed as 1024, the training epoch is set as
100 to get the best result, the negative sampling number |N | is fixed
as 10, and Adam [16] optimizer is used to update all parameters.
Besides, the hyper-parameter 𝜆𝐹 of EASE𝑅 is selected from 10 to 50
with step length 5, the window size of random walk is fixed as 10,
the hidden neural network structure and the latent factor dimension
of base encoder is set as [256 → 512 → 1024 → 128], the deep
of base GNN encoder is selected from {1,2,3}, the 𝐿2 regularization

Table 4: Performance of two item groups.

Item groups MRR

M1 M2 M3 M4 M5

Market-overlapped item 46.15 34.72 36.63 32.52 26.03
Market-specific item 61.32 37.42 45.31 42.77 11.50
Market-overlapped item* 41.47 28.62 27.90 28.37 14.63
Market-specific item* 60.00 30.86 44.36 38.13 9.51

coefficient 𝜆 of our method is chosen from {1𝑒−6,1𝑒−7,1𝑒−8}, the
filtering threshold 𝜖 is selected from 0.01 to 0.02 with step length
0.001, and the margin 𝛾 of our method is selected from{0.1, 0.2,
0.3, 0.4}. In the following section, we report M3Rec results under
𝜆 = 1𝑒−7, 𝜖 = 0.01 and 𝛾 = 0.2 by default.

4.2 Performance Comparisons
Table 2 shows the recommendation performance of M3Rec against
other baselines in terms of MRR, NDCG@10 and HR@10 on the
five markets. To be specific, the ‘Mix’ means that we directly merge
interaction data of markets and train a model to predict all markets.
The ‘Multi’ denotes that the model leverages different modules for
different markets and transfer information across different market
modules. From Table 2, we have several insightful observations:

For ‘Mix’ models: (1) The item-based method EASE𝑅 largely
outperforms other models. This observation validates that the item
similarity is crucial to make predictions. (2) LightGCN and Random
Walk show consistently improve than NeuMF in markets M1,M4
andM5, but gain worsen results in marketsM2 andM3. The reason
might be that the data-scarce marketM2 andM3 have only a small
amount of interaction data than others (see in Table 1). Therefore,
the imbalance data issue with jointly training strategy would cause
the prediction result to be dominated by the other data-rich markets.

For ‘Multi’ models: (1) Comparing with NeuMF and LightGCN,
their extension methods are shown satisfactory improvements in all
markets, which indicates that transferring information in different
market modules is a promising way to enhance MMR. (2) Our
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M3Rec achieves the best metrics in all markets, which shows that
mining item similarity is the key point to enhance MMR.

4.3 Discussion of Model Variants
To investigate the effectiveness of our model components, we con-
duct experiments of three M3Rec variants in Table 3. Note that
the ‘w/o’ denotes removing the corresponding item similarity from
the complete model. From it, we can observe that: (1) The variants
without any item similarities significantly decline on MRR metric,
which demonstrates that the intra- and inter- market level simi-
larities are both beneficial for our model. (2) The impact of intra-
similarities tend to be more significant than inter- level. We sup-
pose the reason is that the intra- similarity could generate robust
user-item correlations to guide better user embeddings.

4.4 Effectiveness of Item Similarity
In this section, to analyze the effect of item similarity for MMR, we
further conduct experiments on two different item groups from the
validation set: the market-overlapped and market-specific items.
We report the performance in Table 4, and the ‘*’ denotes that the
result is obtained from the model variant without both item similar-
ities. From the table, we have the following observations: (1) After
leveraging the item similarities, the recommendation performance
of both item groups shows largely improvement, which demon-
strates that mining item similarities not only enhances the market-
overlapped items, but also benefits the market-specific items. Mean-
while, compared with market-specific items, the improvement of
market-overlapped items is more significant. This is because the
overlapped items have more interactions across markets to learn ro-
bust embeddings. (2) It is surprising that the market-specific items
have better recommendation results than market-overlapped items
in the front four markets. After our statistics, we think the reason
might be the data distribution. Except the M5 market, we find the
average interaction number of market-specific items is more than
market-overlapped items, which means that the market-specific
items are more popular in these markets. Thus, it is easy for models
to learn to recommend these popular items. However, as shown in
Table 1, the overlapping rate reflects that the number of market-
specific items is much less than the market-overlapped items in the
first four markets. In this case, the higher overlapping rate indicates
that it is urgent to enhance the overlapped item performance by
transferring information from other data-rich markets.

5 CONCLUSIONS
In this paper, we investigate the multi-market recommendation
(MMR) and propose a novel approach M3Rec. Specifically, we first
provide a fresh perspective to solve MMR by mining the item sim-
ilarity, which plays the central role to bridge different markets.
Then, we consider two global item similarities for MMR, the intra-
market item similarity is learned by linear model EASE𝑅 and the
inter-market item similarity is generated by random walk. Finally,
we fuse the two global item similarities in our local market recom-
mendation. Extensive experiments demonstrate that M3Rec out-
performs current state-of-the-art methods, and detailed analyses
demonstrate the effectiveness of our model components.
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